MICROSTRUCTURE CHARACTERISTICS OF Cr3C2-NiCr COATINGS DEPOSITED WITH THE HIGH-VELOCITY OXY-FUEL THERMAL-SPRAY TECHNIQUE

Author:

Lauzuardy Jason,Agus Basuki Eddy,Martides Erie,Septianissa Selly,Prawara Budi,Dedi ,Junianto Endro,Riyanto Edy

Abstract

With the goals of protecting boiler tubes from hostile surroundings, increasing thermal efficiency, and minimizing time losses from damage, thermal-spray coating methods for high-temperature operations were created. Ceramic-metal composite materials (e.g., Cr3C2-NiCr) are well known for protecting components from erosion decay in a high-temperature environment. In this investigation, the high-velocity oxy-fuel (HVOF) thermal-spray technique was employed to successfully deposit several variations of feedstocks containing Cr3C2-NiCr and NiCr powders onto a medium-carbon steel substrate, with and without filtering through a 400-mesh screen. Utilizing X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the microstructure features of the deposited coatings were assessed. The experiment results demonstrate that the crystallite and grain sizes of the deposited coatings can be increased by reducing the powder size through a sifting process using a 400-mesh sieve. This procedure also resulted in a coating with a higher density and lower porosity. Furthermore, new compounds including Cr2O3 and MnCr2O4 were formed in the coating layers as indicated by the XRD spectra. These phenomena are in good agreement with the EDS mapping of Cr and O, which reveals highly similar distributions. Manganese was originally a part of the substrate composition. Manganese could diffuse rapidly across the Cr2O3 layer and form the MnCr2O4 compound, indicating the manganese diffusion from the substrate into the Cr3C2-NiCr coating. The formation of MnCr2O4 can be attributed to the prior emergence of the Cr2O3 compound.

Publisher

Institute of Metals and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3