Role of Gut Microbiota in Neuroinflammation and Neurological Disorders

Author:

Raj Khadga1,Arora Navneet2,Rohit Bentham Science Publisher2,Awasthi Anupam1,Patel Mayank1,Chaudhary Ankit1,Singh Shamsher1,Gupta G.D.3

Affiliation:

1. Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab-142001, India

2. Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab-142001, India

3. Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India

Abstract

The prevalence of neurological diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple sclerosis (MS) are growing in the world, but their pathogenesis is unclear and effective treatment does not exist. Neuroinflammation is associated with many neurodegenerative mechanisms involved in neurodegenerative diseases. The human gut microbiota is an aggregate of microorganisms that live in the gastrointestinal tract (GIT) that plays a crucial role in maintaining human health and the pathogenesis disease condition. The microbiota can affect neuronal function through neurotransmitters, vitamins, and neuroactive microbial metabolites like shortchain fatty acids. The change in gut microbiota architecture causes increased permeability of the intestine and immune system activation, contributing to systemic inflammation, neurological injury, and eventually neurodegeneration. Available data suggest that the microbiota send signals to the central nervous system (CNS) by activating afferent neurons of the vagus nerve via neuroendocrine and neuroimmune pathways. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring gut homeostasis and proper digestion. Evidence suggests that dysfunction of the gut-brain axis could be a significant factor leading to many disorders of CNS. In this chapter, we explore how the gut microbiome may affect brain function and the development of neurological disorders. In addition, we are also trying to highlight the recent advances in improving neurological disease by supplemental probiotics and faecal microbiota transplantation via the concept of the gut-brain axis to combat brain-related dysfunction.

Publisher

BENTHAM SCIENCE PUBLISHERS

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3