Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents

Author:

Amarachi Chime Salome12ORCID,Attama Anthony A.23

Affiliation:

1. Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria

2. Drug Delivery and Nanomedicines Research Laboratory, University of Nigeria, Nsukka, Nigeria

3. Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria

Abstract

Abstract: Lipid based nanoparticle (LNP) structures commonly used for drug delivery already in clinical use are generally classified into three viz vesicular systems, emulsion based systems and lipid nanoparticles. The details of the types, basic structural characteristics in drug delivery, clinical trials, and patents have been discussed in this work. Moreover, despite the therapeutic efficacies of LNPs, there are some toxicity challenges associated with their use. These toxicities may be cytotoxicity or genotoxicity; to overcome some of these challenges, some measures could be taken during preformulation stages in order to circumvent it. These measures have been extensively discussed in this work. LNPs are used in the targeting of immune cells, which are direct participants in a variety of diseases, hence, are attractive targets for therapy. Cell specific targeting of therapeutic agent(s) helps to concentrate and localize the therapeutic effect and, hence, lowers the systemic side effects, while simultaneously increasing the management outcome. Nanotechnology and particle engineering helps distinguish each immune cell from the other to deliver therapeutic agents and ensure in vivo stability as well as sustained drug release. Surface modification of LNP is an important characteristic utilized in targeting therapeutic agents and allows the utilization of various specific properties expressed in each immune cell. These targeting strategies have been explored in this work exhaustively, and some of the companies and academic labs that develop LNP have been discussed. Also, new ways of developing novel patentable LNP have been discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3