Integrated Bioinformatics Analysis for the Screening of Hub Genes and Therapeutic Drugs in Hepatocellular Carcinoma

Author:

Ran Jianghua1,Su Qiuming1,Li Wang1,Zhang Xibing1,Wu Ruichao1,Zheng Kepu1,Zhou Tao1,Dong Yun1,He Yutao1,Wang Duo1

Affiliation:

1. Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, 650224, Yunnan, China

Abstract

Background: Liver cancer is a major medical problem because of its high morbidity and mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Currently, the mechanism of HCC is unclear, and the prognosis is poor with limited treatment. Objective: The purpose of this study is to identify hub genes and potential therapeutic drugs for HCC. Methods: We used the GEO2R algorithm to analyze the differential expression of each gene in 4 gene expression profiles (GSE101685, GSE62232, GSE46408, and GSE45627) between HCC and normal hepatic tissues. Next, we screened out the differentially expressed genes (DEGs) by corresponding calculation data according to adjusted P-value < 0.05 and | log fold change (FC) | > 1.0. Subsequently, we used the DAVID software to analyze the DEGs by GO and KEGG enrichment analysis. Then, we carried out the protein-protein interaction (PPI) network analysis of DEGs using the STRING tool, and the PPI network was constructed by Cytoscape software. MCODE plugin was used for module analysis, and the hub genes were screened out by the Cyto- Hubba plugin. Meanwhile, we used The Kaplan-Meier plotter, GEPIA2 and HPA databases to exert survival analysis and verify the expression alternation of hub genes. Furthermore, we used ENCORI, TargetScan, miRDB and miRWalk database to predict the upstream regulated miRNA of hub genes and construct a miRNA-hub genes network by Cytoscape software. Finally, we selected potential therapeutic drugs for HCC through DGIdb databases. Results: A total of 415 DEGs were screened in HCC, including 196 up-regulated DEGs and 219 down-regulated DEGs. The results of KEGG pathway analysis suggested that the up-regulated DEGs can regulate the cell cycle, and DNA replication signal pathway, while the down-regulated DEGs were associated with metabolic pathways. In this study, we identified 11 hub genes (AURKA, BUB1B, TOP2A, MAD2L1, CCNA2, CCNB1, BUB1, KIF11, CDK1, CCNB2 and TPX2), which were independent risk factors of HCCand all up-regulated DEGs. We verified the expression difference of hub genes through the GEPIA2 and HPA database, which was consistent with the results of GEO data. We found that those hub genes were mutations in HCC according to the cBioPortal database. Finally, we used the DGIdb database to select 32 potential therapeutic targeting drugs for hub genes. Conclusions: In summary, our study provided a new perspective for researching the molecular mechanism of HCC. Hub genes, miRNAs, and candidate drugs provide a new direction for the early diagnosis and treatment of HCC.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3