Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications

Author:

Aljabali Alaa A.A.1ORCID,Obeid Mohammad A.1

Affiliation:

1. Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan

Abstract

Background:: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity. Objectives:: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors. Methods:: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out. Results:: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications. Conclusion:: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microfluidic Manufacturing of Niosomes;AAPS Introductions in the Pharmaceutical Sciences;2024

2. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages;Methods in Molecular Biology;2023-11-16

3. Customizable Microfluidic Devices: Progress, Constraints, and Future Advances;Current Drug Delivery;2023-10-26

4. Nanomaterials as a Potential Target for Infectious Parasitic Agents;Current Drug Delivery;2023-02-23

5. Nanomaterials and Their Impact on the Immune System;International Journal of Molecular Sciences;2023-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3