Affiliation:
1. Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
2. Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
Abstract
Background:
The aim of the current investigation is to assess the protective effects of thymoquinone
(TQ) as a potential compound for the treatment and/or prevention of neurovascular complications
of diabetes, including DR.
Objective:
The aim of the current investigation is to assess the protective effects of thymoquinone
(TQ) as a potential compound for the treatment and/or prevention of neurovascular complications
of diabetes, including DR.
Methods:
Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized and the retinas were collected and analyzed for the expression levels of brain derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR) and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina was assessed as a marker of reactive oxygen species (ROS) and blood–retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups.
Results:
Diabetic animals treated with TQ showed improvements in the liver and kidney functions
compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including
BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition,
TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats
and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen
species (ROS) generation.
Conclusion:
These findings suggest that TQ harbors a significant potential to limit the neurodegeneration
and retinal damage that can be provoked by hyperglycemia in vivo.
Publisher
Bentham Science Publishers Ltd.
Subject
General Health Professions
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献