Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs

Author:

Hrubša Marcel1,Nurjamal Khondekar2,Carazo Alejandro1ORCID,Nayek Nayana2,Karlíčková Jana3ORCID,Applová Lenka4,Karmakar Indrajit2,Parvin Shamima5,Fadraersada Jaka1,Macáková Kateřina5ORCID,Mladěnka Přemysl1ORCID,Brahmachari Goutam5

Affiliation:

1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic

2. Department of Chemistry, Visva-Bharati (Central University), Santiniketan, India

3. Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic

4. Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic

5. Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic

Abstract

Background: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. Objective: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. Methods: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. Results: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1. Conclusion: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3