Sintering Driven Void Formation in PS@WO3 Core-Shell Composites: A Photodegradation Enhancement Strategy

Author:

Yeh Min Yen1ORCID,You Ruei Ying1,Cheng Po Wen1,Hwang Shih-Syuan1,Hu Gui-Cheng1,Chang Shun Hsyung2

Affiliation:

1. Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan

2. Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan

Abstract

Background: Polystyrene nanospheres are used as a substrate for the hydrothermal coating of tungsten trioxide (WO3) to form a core-shell composite of PS@WO3. The core-shell structure is used for the next sintering step. This produces porous WO3. The focus of this study is on the role of porous WO3 in enhancing photocatalytic performance. Methods: The hydrothermal method was employed for coating, and the surface morphology, as well as the structural properties of WO3-coated PS spheres, were systematically investigated using SEM and XRD analyses. Additionally, the sintering process was introduced to enhance the material by inducing rupture in the PS sphere core, creating voids that significantly increased the material's surface area. Results: The evaluation of the effect of sintering temperature on photodegradation efficiency highlighted the crucial role of sintering temperature. Un-sintered and 300°C sintered WO3, both having a hexagonal crystalline structure, exhibited superior degradation efficiencies compared to samples sintered at higher temperatures (400°C and 500°C). In particular, the 300°C sintered WO3 outperformed its un-sintered counterpart despite identical crystalline structures. The performance of the PS@WO3 composite was assessed to determine the enhanced role of porous WO3. The porous WO3 obtained, in particular by the sintering of the core-shell PS@WO3 composites at 300°C, showed a remarkable improvement in the degradation efficiency. These composite demonstrated over 95% efficiency within 10 minutes and achieved near complete (100%) degradation for a further 10 minutes, surpassing the performance of pure WO3. It is important to clarify that while the final product was predominantly WO3 after the sintering process, the inclusion of PS served a critical purpose in creating voids during sintering. The PS@WO3 composite structure used as a resource for the preparation of porous WO3, even with a potentially reduced PS composition, has been found to play a significant role in influencing the surface area of the material, and consequently the photocatalytic performance. Conclusion: The study has highlighted the importance of crystalline structure and sintering conditions in optimizing the efficiency of photocatalytic materials. The porous WO3 obtained, in particular by the sintering of the core-shell PS@WO3 composites at 300°C, showed promising potential for applications under UV and visible LED light irradiation. These results provide valuable insights for the development of advanced photocatalytic materials with improved performance, highlighting WO3 as the key contributor to the observed improvements.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3