Smartphone-Based Colourimetric Detection of Methyl Red, Co(II), Uric Acid, and Topotecan after Pre-concentration onto a Hectorite Clay-Hydroxyethylcellulose Hybrid

Author:

Mazarakis Anastasios Phoebus1,Tsotsou Georgia Eleni1ORCID

Affiliation:

1. Laboratory of Chemistry, Biochemistry and Cosmetology, Department of Biomedical Sciences, University of West Attica, Egaleo, 122 43, Greece

Abstract

Objective:: This paper describes a new, digital image colourimetry-based format for the quantification of analytes in an aqueous solution. Method:: The proposed method is based on analyte pre-concentration by adsorption onto Bentone LT. Bentone LT pellet isolation comes after adsorption, followed by in-situ application of an analyteselective chromogenic reaction. The resulting pellet colouration is captured by the phone’s integrated camera and assessed using the free open-source image processing software, ImageJ. Responses are calibrated and quantified. Results:: We tested the applicability of the proposed methodology for the quantification of specific model analytes which are of concern in environmental matrices (methyl red, Co(II), uric acid, topotecan). The smartphone-based assay was proven reliable in quantifying the model analytes (standard recovery of 82-116%), alone or in mixture, from dilute aqueous solutions and was found to depict accurately the adsorption behaviour followed photometrically in solution. Lower limit of linearity was calculated at 0.05, 0.11, 0.85 and 0.20 μg/mL for methyl red, Co(II), uric acid, and topotecan, respectively. The proposed format was found superior when compared to alternative published photometric/ colourimetric assays in terms of the lower limit of linearity. In the presence of possible adsorption interferents, the lower limit of linear response was shifted to slightly higher concentrations for topotecan i.e. from 0.2 μg/mL to 0.5 μg/mL. Conclusion:: We here demonstrate the extended applicability of the proposed methodology for the smartphone-based quantification of the specific model analytes. The applicability of this analysis format likely extends to other analytes, where analyte-specific colour formation is feasible.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3