Gold Nanoparticle-Based Drug Delivery System for the Diagnosis and Treatment of Bacterial Meningitis

Author:

Gautam Darsh1,Pandit Vinay2,Kumar Sanjay3,Talwan Poonam4,Sharma Tarun2

Affiliation:

1. Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research, Nadaun, Himachal Pradesh, 177033, India

2. Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Kangra, Himachal Pradesh, 176041, India

3. Department of Pharmacognosy, Laureate Institute of Pharmacy, Kathog, Kangra, Himachal Pradesh, 176041, India

4. Department of Pharmaceutical Chemistry, Himachal Institute of Pharmaceutical Education and Research, Nadaun, Himachal Pradesh, 177033, India

Abstract

Abstract: Managing bacterial pathogens in the central nervous system is an immense issue for researchers all around the globe. The problem of these infections remains throughout the population, regardless of the discovery of several possible medicines. The major obstacle to drug delivery is the BBB, but only a few medicines that fulfill demanding requirements can penetrate it. Considering inadequate antibiotic alternatives and the increasing development of resistance, it is more important than ever to find new approaches to address this worldwide problem. Medical nanotechnology has evolved as a cutting-edge and effective means of treating many of the most difficult CNS illnesses, including bacterial meningitis. Various metallic nanoparticles, such as gold, silver, and titanium oxide, have shown bactericidal potential. Gold nanoparticles have gotten a great deal of interest due to their excellent biocompatibility, simplicity of surface modification, and optical qualities. The current study described AuNP-based detection and therapy options against meningitis-- causing bacteria, including bacterial pathogens' mechanisms for crossing BBB and AuNPs' mode of Action against those bacteria. The current study looked into green synthesized bactericidal gold nanoparticles-based therapy techniques for diagnosing and intervening in bacterial meningitis. Nevertheless, more research is needed before these laboratory findings can be translated into therapeutic trials. Nonetheless, we can confidently assert that the knowledge acquired and addressed in this study will benefit neuro-nanotechnology researchers.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3