Acceleration of Baylis-Hillman Reaction using Ionic Liquid Supported Organocatalyst

Author:

Srivastava Vivek1ORCID

Affiliation:

1. Mathematics and Basic Sciences- Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana (Rajasthan), India

Abstract

Background: Baylis-Hillman reaction requires cheap starting materials, easy reaction protocol, and possibility to create the chiral center in the reaction product has increased the synthetic efficacy of this reaction which also suffers from high catalyst loading, low reaction rate, and poor yield. Objective: The extensive use of various functional or non-functional ionic liquids (ILs) with organocatalyst acts not only as reaction medium but also as a support to anchor the catalysts to increase the reaction rate of various organic transformations. Methods: In this manuscript, we have demonstrated the synthesis of quinuclidine-supported trimethylamine-based functionalized ionic liquid as a catalyst for the Baylis-Hillman reaction. Results: We obtained the Baylis-Hillman adducts in good, isolated yield along with low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. N- ((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide was also successfully synthesized using CATALYST-3 promoted Baylis-Hillman reaction. Conclusion: We successfully isolated the 25 types of Baylis-Hillman adducts using three different quinuclidine-supported ammonium-based ionic liquids such as Et3AmQ][BF4] (CATALYST-1), [Et3AmQ][PF6] (CATALYST-2), and [TMAAmEQ][NTf2](CATALYST-3) as new and efficient catalysts. Generally, all the reactions demonstrated higher activity and gave good to high yield in competition with various previously reported homogenous and heterogeneous catalytic systems. Easy catalyst and product recovery followed by 6 times of catalysts recycling were the added advantages of the prosed catalytic system. Tedious and highly active N-((E,3S,4R)-5-benzylidene-tetrahydro- 4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivative was also synthesized using CATALYST- 3 followed by Baylis-Hillman reaction.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Analytical Chemistry,Catalysis

Reference44 articles.

1. Carey F.A.; Sundberg R.J.; Carey F.A.; Sundberg R.J.; Advanced organic chemistry 1990,443-492

2. Carruthers W.; Coldham I.; Modern methods of organic synthesis 2012,1-104

3. Mandal S.; Mandal S.; Ghosh S.K.; Ghosh A.; Saha R.; Banerjee S.; Saha B.; Review of the aldol reaction. Synth Commun 2016,46,1327-1342

4. Srivastava V.; Ionic liquid mediated recyclable sulphonimide based organocatalysis for aldol reaction. Cent Eur J Chem 2010,8,269-272

5. Ito H.; Taguchi T.; Asymmetric claisen rearrangement. Chem Soc Rev 1999,28,43-50

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3