Promotion of Cervical Cancer Cell Proliferation by miR-130b Expression Level Changes and Inhibition of its Apoptosis by Targeting CDKN1A Gene

Author:

Mu Hong1,Wang Yanli2,Yang Lei1,Fan Caihong3,Han Munan4,Liu Tao5,Xie Lili1,Gao Qiang1

Affiliation:

1. Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China

2. Department of Clinical Laboratory, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China

3. The First Central Clinical College of Tianjin Medical University, Tianjin Medical University, Tianjin, China

4. First Clinical Medical College, Nanjing Medical University, Nanjing, China

5. Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin, China

Abstract

Background: Dysregulation of miR-130b expression is associated with the development of different cancers. However, the description of the biological roles of miR-130b in the growth and survival of cervical cancer cells is limited. Method: The miR-130b levels in cervical cancer cells during different stages of growth were determined using reverse transcription-quantitative PCR. The methylation level of DNA sequences upstream of the miR-130b gene was measured using an SYBR Green-based quantitative methylation- specific PCR. Reverse transcription-quantitative PCR, Western blotting, and fluorescence report assays were used to identify the miR-130b-targeted gene. Cell counting kit-8 and comet assays were used to determine cell viability and DNA damage levels in cells, respectively. EdU Apopllo488 In Vitro Flow Cytometry kit, propidium iodide staining, anti-γ-H2AX antibody staining, and Annexin-V apoptosis kit were subsequently used to determine DNA synthesis rates, cell cycle distribution, count of DNA double-strand breaks, and levels of apoptotic cells. Result: miR-130b levels increased at exponential phases of the growth of cervical cancer cells but reduced at stationary phases. The methylation of a prominent CpG island near the transcript start site suppressed the miR-130b gene expression. MiR-130b increased cell viability, promoted both DNA synthesis and G1 to S phase transition of the cells at exponential phases, but reduced cell viability accompanied by accumulations of DNA breaks and augmentations in apoptosis rates of the cells in stationary phases by targeting cyclin-dependent kinase inhibitor 1A mRNA. Conclusion: miR-130b promoted the growth of cervical cancer cells during the exponential phase, whereas it impaired the survival of cells during stationary phases.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bushen Tongluowan promotes chondrocyte proliferation through multi-gene regulation;Pharmacological Research - Modern Chinese Medicine;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3