Ligand-mediated Targeted Drug Delivery Approaches against Hepatocellular Carcinoma

Author:

Singh Amrita1,Mishra Sudhanshu1ORCID,Sharma Saurabh2,Ojha Smriti1,Yagnik Sunil3,Pandey Sudhi4

Affiliation:

1. Department of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India

2. Faculty of Pharmacy, Kalinga University, Raipur, India

3. Ravishankar College of Pharmacy, Bhopal, India

4. Department of Homeopathy, Swarrnim Startup and Innovation University, Gandhinagar, India

Abstract

Abstract: One of the most important health problems in the world today is cancer. The World Health Organization (WHO) reported that it results in 8.9 million deaths annually. Malignant tumours and unregulated cell proliferation are features of malignant neoplasms, which can also invade nearby body regions. Hepatocellular carcinoma is the third most prevalent cause of cancer-related death worldwide and the fifth most common kind of cancer, according to a recent analysis. Patients with liver disease as well as chronic hepatitis B and C are more likely to develop hepatocellular carcinoma (HCC). Physical barriers, including RES absorption, opsonization, and first-pass drug metabolism, make drug therapy more challenging. Conventional cancer therapy procedures have a low response rate or may continue to be unsuccessful due to multi-drug resistance (MDR), high clearance rates, and other side effects because of suboptimal drug distribution and insufficient drug concentration reaching cancer cells. Innovative target drug molecules that are tailored to the injured liver cells must be developed in order to improve medication administration and drug targeting. The use of targeting ligands that have been joined to drug molecules or nanocarriers forms the basis of innovative targeting techniques. After being conjugated with the treatment method, ligands for targeting hepatocellular carcinoma cells included asialoglycoprotein, galactoside, lactobionic acid, mannose-6-phosphate, PDGF, antibodies, and aptamers.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3