Joint Screening and Identification of Potential Targets of Nitazoxanide by Affinity Chromatography and Label-Free Techniques

Author:

Zhu Menghan12,Qi Dongxia12,Chen Dongliang2,Ye Wenchong2,Wang Xiaoyang2,Wang Chunmei2,Zhou Wen2,Zhou Bin3,Li Juan1,Zhang Keyu2

Affiliation:

1. College of Chemistry, Xiangtan University, Yuhu District, Xiangtan 411105, Hunan, China

2. Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

3. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China

Abstract

Background: Nitazoxanide not only exhibits a broad spectrum of activities against various pathogens infecting animals and humans but also induces cellular autophagy. Currently, the pattern of action and subcellular targets of nitazoxanide-induced cellular autophagy are still unclear. Methods: To identify potential targets of nitazoxanide in mammalian cells, we developed an af-finity chromatography system using tizoxanide, a deacetyl derivative of nitazoxanide, as a ligand. Affinity chromatography was performed using VERO cell extracts on tizoxanide-biotin, and the isolated binding proteins were identified by mass spectrometry. Candidate target proteins ob-tained using affinity chromatography were co-analysed with the drug affinity response target sta-bility method. Fluorescent probes obtained by coupling rhodamine B to nitazoxanide were used for intracellular localisation of the binding targets. Solvent-induced protein precipitation profiling and thermal proteome profiling were used to further validate the binding proteins. Results: The joint analysis of the drug affinity response target stability method and affinity chro-matography resulted in the screening of six possible candidate target proteins. Fluorescent probes localised the nitazoxanide-binding protein around the nuclear membrane. Molecular docking re-vealed that the binding proteins mainly formed hydrogen bonds with the nitro group of nitazoxa-nide. Solvent-induced protein precipitation profiling and thermal proteome profiling further vali-dated SEC61A, PSMD12, and PRKAG1 as potential target proteins of nitazoxanide. Conclusion: The data supports the idea that nitazoxanide is a multifunctional compound with multiple targets.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3