Bioinformatics Analysis Identifies CPZ as a Tumor Immunology Biomarker for Gastric Cancer

Author:

Gu Yuan1,Gao Ying1,Tang Xiaodan1,Xia Huizhong1,Shi Kunhe1

Affiliation:

1. Department of General Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

Abstract

Background: Gastric cancer (GC) is one of the most common malignancies worldwide. However, the biomarkers for the prognosis and diagnosis of Gastric cancer were still need. Objective: The present study aimed to evaluate whether CPZ could be a potential biomarker for GC. Method: Kaplan-Meier plotter (http://kmplot.com/analysis/) was used to determine the correlation between CPZ expression and overall survival (OS) and disease-free survival (DFS) time in GC [9]. We analyzed CPZ expression in different types of cancer and the correlation of CPZ expression with the abundance of immune infiltrates, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, via gene modules using TIMER Database. Results: The present study identified that CPZ was overexpressed in multiple types of human cancer, including Gastric cancer. We found that overexpression of CPZ correlates to the poor prognosis of patients with STAD. Furthermore, our analyses show that immune infiltration levels and diverse immune marker sets are correlated with levels of CPZ expression in STAD. Bioinformatics analysis revealed that CPZ was involved in regulating multiple pathways, including PI3K-Akt signaling pathway, cGMP-PKG signaling pathway, Rap1 signaling pathway, TGF-beta signaling pathway, regulation of cell adhesion, extracellular matrix organization, collagen fibril organization, collagen catabolic process. Conclusion: This study for the first time provides useful information to understand the potential roles of CPZ in tumor immunology and validate it to be a potential biomarker for GC.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3