Affiliation:
1. School of Software, Yunnan University, Kunming, China; 2School of Information, Yunnan Normal University, Kunming, China
Abstract
Background:
Protein secondary structure prediction (PSSP) is a fundamental task in
bioinformatics that is helpful for understanding the three-dimensional structure and biological
function of proteins. Many neural network-based prediction methods have been developed for
protein secondary structures. Deep learning and multiple features are two obvious means to improve
prediction accuracy.
Objective:
To promote the development of PSSP, a deep convolutional neural network-based
method is proposed to predict both the eight-state and three-state of protein secondary structure.
Methods:
In this model, sequence and evolutionary information of proteins are combined as multiple
input features after preprocessing. A deep convolutional neural network with no pooling layer and
connection layer is then constructed to predict the secondary structure of proteins. L2 regularization,
batch normalization, and dropout techniques are employed to avoid over-fitting and obtain better
prediction performance, and an improved cross-entropy is used as the loss function.
Results:
Our proposed model can obtain Q3 prediction results of 86.2%, 84.5%, 87.8%, and 84.7%,
respectively, on CullPDB, CB513, CASP10 and CASP11 datasets, with corresponding Q8
prediction results of 74.1%, 70.5%, 74.9%, and 71.3%.
Conclusion:
We have proposed the DCNN-SS deep convolutional-network-based PSSP method,
and experimental results show that DCNN-SS performs competitively with other methods.
Funder
Yunnan University's Research Innovation Fund for Graduate Students
China Postdoctoral Science Foundation
Science and Technology Innovation Team Project of Yunnan Province
National Natural Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献