Development of Moloney Murine Leukemia Virus Reverse Transcriptase Fused with Archaeal DNA-binding Protein Sis7a

Author:

Simanjuntak Goldyna M.1ORCID,Fibriani Azzania1,Fananda Amalia A.1,Yamahoki Nicholas1ORCID

Affiliation:

1. School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia

Abstract

Introduction: Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV RT) is a common enzyme used to convert RNA sequences into cDNA. However, it still has its shortcomings, especially in terms of processivity and thermostability. According to a previous patent, the fusion of polymerase enzyme to an archaeal DNA-binding protein has been proven to enhance its performance. Furthermore, recent studies have also stated that the fusion of a polymerase enzyme to an archaeal DNA-binding protein is predicted to improve its thermostability and processivity. Aim: As an early stage of enzyme development, this study aimed to design, express, and purify enzymatically active MMLV RT fused with archaeal DNA-binding protein. Methods: RT fusion proteins were designed and evaluated using in silico methods. The RT fusion enzyme was then expressed in Escherichia coli BL21(DE3) and purified. Its reverse transcriptional activity was proved using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: This study showed that MMLV RT fusion with Sis7a protein at its C-terminal end using commercial linker (GGVDMI) produced the best in silico evaluation results. The RT fusion was successfully expressed and purified. It was also known that the optimal condition for expression of the RT fusion was using 0.5 mM IPTG with post-induction incubation at room temperature (± 26°C) for 16 hours. In addition, the activity assay proved that the RT fusion has the reverse transcriptional activity. Conclusion: This study shows that the designed MMLV RT Sis7a fusion can be expressed and purified, is enzymatically active, and has the potential to be developed as an improved RT enzyme. Further study is still needed to prove its thermostability and processivity, and further characterize, and plan production scale-up of the MMLV RT Sis7a fusion for commercial use.

Publisher

Bentham Science Publishers Ltd.

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3