A Review on Electrospun Luminescent Nanofibers: Photoluminescence Characteristics and Potential Applications

Author:

George Gibin1,Luo Zhiping1

Affiliation:

1. Department of Chemistry and Physics, Fayetteville State University, Fayetteville, NC, United States

Abstract

<P>Background: Photoluminescent materials have been used for diverse applications in the fields of science and engineering, such as optical storage, biological labeling, noninvasive imaging, solid-state lasers, light-emitting diodes, theranostics/theragnostics, up-conversion lasers, solar cells, spectrum modifiers, photodynamic therapy remote controllers, optical waveguide amplifiers and temperature sensors. Nanosized luminescent materials could be ideal candidates in these applications. </P><P> Objective: This review is to present a brief overview of photoluminescent nanofibers obtained through electrospinning and their emission characteristics. </P><P> Methods: To prepare bulk-scale nanosized materials efficiently and cost-effectively, electrospinning is a widely used technique. By the electrospinning method, a sufficiently high direct-current voltage is applied to a polymer solution or melt; and at a certain critical point when the electrostatic force overcomes the surface tension, the droplet is stretched to form nanofibers. Polymer solutions or melts with a high degree of molecular cohesion due to intermolecular interactions are the feedstock. Subsequent calcination in air or specific gas may be required to remove the organic elements to obtain the desired composition. </P><P> Results: The luminescent nanofibers are classified based on the composition, structure, and synthesis material. The photoluminescent emission characteristics of the nanofibers reveal intriguing features such as polarized emission, energy transfer, fluorescent quenching, and sensing. An overview of the process, controlling parameters and techniques associated with electrospinning of organic, inorganic and composite nanofibers are discussed in detail. The scope and potential applications of these luminescent fibers also conversed. </P><P> Conclusion: The electrospinning process is a matured technique to produce nanofibers on a large scale. Organic nanofibers have exhibited superior fluorescent emissions for waveguides, LEDs and lasing devices, and inorganic nanofibers for high-end sensors, scintillators, and catalysts. Multifunctionalities can be achieved for photovoltaics, sensing, drug delivery, magnetism, catalysis, and so on. The potential of these nanofibers can be extended but not limited to smart clothing, tissue engineering, energy harvesting, energy storage, communication, safe data storage, etc. and it is anticipated that in the near future, luminescent nanofibers will find many more applications in diverse scientific disciplines.</P>

Funder

US National Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3