Selective Sensing Platform Utilizing Graphitized Multi-Walled Carbon Nanotubes for Monitoring of Ondansetron and Paracetamol

Author:

Šimunić Iva1,Mornar Ana2ORCID,Nigović Biljana2ORCID

Affiliation:

1. School of Medicine, University of Zagreb, Salata 12, 10000, Zagreb, Croatia

2. University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovacica 1, 10000, Zagreb, Croatia, Croatia

Abstract

Background: Ondansetron and paracetamol are often co-administrated to prevent and treat nausea and vomiting caused by anaesthesia and to control postoperative pain. In addition, ondansetron is used as the first-line antiemetic in paracetamol overdose. Therefore, a selective and sensitive method for their simultaneous analysis is of great importance. The electroanalytical methods are highly sensitive and offer many possibilities for new sensor platform design. However, at present, no electroanalytical method for simultaneous determination of these drugs has been proposed. Objective: The aim of this study was to develop a novel nanosensor for selective monitoring of ondansetron and paracetamol in pharmaceutical and biological samples without expensive and timeconsuming pretreatments. Methods: The graphitized multi-walled carbon nanotubes embedded in a cation exchange polymer matrix were selected, among various surface functionalizations evaluated, to design a novel sensor. Based on its excellent sensing performance, the first electroanalytical method was developed for the rapid concurrent determination of investigated drugs. Results: The scanning electron microscopy study showed an interlinked nanoporous network structure and a highly enlarged active surface. The developed sensor facilitated electron transfer in the oxidation of both drugs and tremendously enhanced the adsorption capacity for ondansetron, thus exhibiting a significant increase in drug responses and sensitivity. To obtain much sensitive response of investigated drugs, the effect of pH values of supporting electrolyte, dispersed nanomaterial amount, the cation exchange polymer concentration, drop-casting volume of nanocomposite suspension, accumulation potential and deposition time on the peak current was evaluated. The developed electroanalytical method was validated and the practical utility of the proposed nanosensor was tested. Conclusion: The developed sensor is a promising sensing platform with a fast response time for analysis of ondansetron and paracetamol at very different concentration levels found in their fixeddose combination and human serum sample after recommended daily doses showing its potential usage in pharmaceutical quality control and clinical research.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3