Dermal Nano-Phytomedicines: A Tool Alluring Towards Plausible Treatment of Photoaging

Author:

Goel Honey1,Talegaonkar Sushama2,Sharma Ayushi2,Arora Kajal2,Chaurasia Kavita2,Siddiqui Lubna3

Affiliation:

1. Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India

2. Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India

3. Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India

Abstract

Abstract: Ultraviolet radiation serve as a principal carter to dermatoheliosis, also professed as extrinsic aging or photoaging that encompasses premature skin vicissitudes secondary to damage instigated by chronic sun exposure. The present literature study embarks on the fundamental understanding of molecular/pathophysiological mechanisms and signal transduction pathways convoluted in the process of photoaging. Special impetus have also been laid to the morphological, biological and histological aspects highlighting the impact of age, gender, type of skin, intensity of radiation exposure and cellular biomarkers. Further, this review examines the state-of-the-art practices or experimental models (such as in vitro cell lines/in vivo animal models/ex vivo skin models) employed for the physicochemical and toxicological characterization of nanobiomaterials in photoaging research. Efforts have been made to recapitulate the potential application of phytoprotectants based nanotherapies or approaches in the efficacious management of photoaging. Furthermore, the study aims to disseminate the recent advances (in terms of patented compositions, novel nanotechnologies and commercial nanoformulations (having diverse anti-aging and photo-protective product portfolio) available in the clinical settings or in the cosmaceutical sector for improvising the aesthetic performance) underlining the tremendous growth in the nutracosmaceutical sector. The authors firmly believe that the current review shall not only capture the interest of readers towards the process of dermatoheliosis but, could also rekindle the attention of scientific community for inclusive assimilation of nanotechnology with nutraceuticals that may aid as a barrier against exogenous or endogenous toxic substances currently in practice to treat a variety of skin disorders.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3