Dry Deposition above Smooth Surfaces - A Numerical Investigation for the Concentration Boundary Layer

Author:

Hussein Tareq12ORCID,Bakri Zaid1,Jaghbeir Omar Al1

Affiliation:

1. Department of Physics, School of Science, The University of Jordan, Amman 11942, Jordan

2. Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, PL 64, FI-00014 UHEL, Helsinki, Finland

Abstract

Objective: Dry deposition velocity towards a surface is commonly investigated by modelling. However, there is still a lack of understanding about the nature of the concentration boundary layer (CBL). Methods: We aimed at acquiring an in-depth description of the particle concentration profile within the CBL by investigating the layer height and the concentration profile. The particle concentration, as a solution to the particle flux equation, is obtained and modeled numerically by performing the left Riemann sum using MATLAB software. The friction velocity !∗ and the particle diameter !! are the major parameters taken into consideration when characterizing the concentration boundary layer above a surface. The particle concentration profile depends on the friction velocity; the concentration gradient starts from zero at the surface and reaches its maximum in the middle of the layer and then reaches zero again at the top of the boundary layer. Results: The concentration profile is slightly altered with a sudden increase in the concentration gradient at the surface when considering large particles or when the friction velocity has extreme values. Conclusion: The boundary layer height (y+ cbl) varied with the particle diameter, and a proper value is 100 to ensure accurate calculations for the dry deposition velocity (diameter 0.01 – 100 μm) above a smooth surface. From a numerical point of view, the numerical setup of the calculation required y+ divisions to be more than 1000 for all particle diameters included in the investigation. In addition, y+ max = 104 is important for ultrafine particles (diameter smaller than 0.1 μm). Nevertheless, y+ max does not need to be investigated beyond 100 when the friction velocity is below 10 cm/s.

Funder

Finnish Academy

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Reference23 articles.

1. Bozlaker A.; Muezzinoglu A.; Odabasi M.; Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J Hazard Mater 2008,153(3),1093-1102

2. El-Batsh H.; Modelling Particle Deposition on Compressor and Turbine Blades., PhD Thesis, Vienna University of Technology: Vienna, 2001

3. Liu B.Y.H.; Ahn K.; ho Particle deposition on semiconductor wafers. Aerosol Sci Technol 1987,6(3),215-224

4. Lobo P.; Durdina L.; Brem B.T.; Crayford A.P.; Johnson M.P.; Smallwood G.J.; Siegerist F.; Williams P.I.; Black E.A.; Llamedo A.; Thomson K.A.; Trueblood M.B.; Yu Z.; Hagen D.E.; Whitefield P.D.; Miake-Lye R.C.; Rindlisbacher T.; Comparison of standardized sampling and measurement reference systems for aircraft engine non-volatile particulate matter emissions. J Aerosol Sci 2019,2020(145)

5. Pui D.Y.H.; Ye Y.; Liu B.Y.H.; Experimental study of particle deposition on semiconductor wafers. Aerosol Sci Technol 1990,12(4),795-804

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3