Preparation and Characterization of Amine- and Carboxylic Acid-functionalized Superparamagnetic Iron Oxide Nanoparticles Through a One-step Facile Electrosynthesis Method

Author:

Aghazadeh Mustafa1,Karimzadeh Isa2,Ganjali Mohammad Reza3

Affiliation:

1. Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395- 834, Tehran, Iran

2. Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3. Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran

Abstract

Background: Surface modified magnetite nanoparticles (MNPs), can act as interesting candidates for use in various biomedical areas. Coating MNPs with amino- or carboxylic acidfunctionalized groups can be used as a tool for covalently binding MNPs to biomolecules for medical uses. The conventionally used methods are also mostly multistep routes requiring purification processes. Objective: Herein, we developed a simple and facile approach with potentials for the large-scale synthesis of bare and/or amine- and carboxylic acid-functionalized MNPs. The resulting product and similarly prepared bare MNPs were studied by XRD, FT-IR, DSC-TGA, TEM, FE-SEM, DLS and VSM analyses. Method: The magnetite NPs were deposited on the steel cathode by a cathodic electrochemical deposition procedure. A galvanostatic mode was applied in the electrodeposition experiments at a dc current density for 30 min. The purification steps were done for the prepared samples. The obtained black powders were evaluated by characterization analyses. Results: The XRD peaks are well-matched with a cubic spinel structure of magnetite and confirmed that the amino acid binding process did not result in a phase change in Fe3O4 during the electrodeposition. The presence of amine and carboxylic functional groups on the surface of the electrosynthesized MNPs was confirmed by FTIR. The size increases complicated the presence of the amino acid layer on the iron oxide nanoparticles as compared with bare MNPs. We synthesized amine- and carboxylic acid-functionalized magnetite NPs through facile novel method, and compare with the deposited bare MNPs. Our findings confirmed that the aspartic acid and asparagine can be efficiently coated on the surface of MNPs during their CE electrodeposition. The functionalized MNPs were found to have favorable size and proper magnetic properties which are suitable for biomedical applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3