The Tensile Strength of Gelatin Nanofibers Containing Nanohydroxyapatite and Nanocurcumin

Author:

Rezaei Yashar12,Javadikia Leila3,Dizaj Solmaz Maleki1,Sharifi Simin4,Khosroshahi Amir Reza Jamei5

Affiliation:

1. Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

3. Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

4. Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;

5. Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Aim: The aim of this study was to prepare gelatin-nanocurcumin/nanohydroxy apatite nanofibers and test the effect of nanohydroxyapatite and nanocurcumin on the tensile strength of gelatin nanofibers. Finding the ideal bone replacement material has long been the focus of research in the field of bone regeneration. This study also aimed to assess the effect of adding nanohydroxy-apatite and nanocurcumin on the tensile strength of gelatin nanofibers in order to propose an ideal nanofiberous scaffold for bone regeneration application. Methods: Gelatin-curcumin nanofibers were prepared using an electrospinning method with a ratio of 70% to 30% of gelatin and curcumin and 5% of hydroxyapatite. Results: Adding curcumin to the gelatin nanofiber structure increased its tensile strength in the wet state (21.03 ± 2.17 to 28.54 ± 0.59, p < 0.0001). Besides, adding nanohydroxyapatite to the structure of gelatin nanofibers increased its tensile strength in dry (30.31 ± 0.64 to 35.79 ± 1.13, p < 0.0001) and wet conditions (28.54 ± 0.59 to 34.46 ± 0.86, p = 0.0020). Conclusion: As adding curcumin and nanohydroxyapatite increased the tensile strength of gelatin nanofibers, it seems that these nanofibers can play a promising futuristic role in bone and dental tis-sue engineering. However, more in vitro, in vivo, and clinical studies are recommended to approve this finding.

Funder

Vice Chancellor for Research at Tabriz University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3