Immuno-informatics-based Identification of Novel Potential B Cell and T Cell Epitopes to Fight Zika Virus Infections

Author:

Ezzemani Wahiba1,Windisch Marc P.2,Kettani Anass3,Altawalah Haya4,Nourlil Jalal5,Benjelloun Soumaya1,Ezzikouri Sayeh1ORCID

Affiliation:

1. Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco

2. Applied Molecular Virology Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam- si, Gyeonggi-do, South Korea

3. Laboratoire de Biologie et Sante (URAC34), Departement de Biologie, Faculte des Sciences Ben Msik, Hassan II University Of Casablanca, Morocco

4. Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait

5. Medical Virology and BSL3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco

Abstract

Background: Globally, the recent outbreak of Zika virus (ZIKV) in Brazil, Asia Pacific, and other countries highlighted the unmet medical needs. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. Objective: In this study, we aimed to design an epitope-based vaccine for ZIKV using an in silico approach to predict and analyze B- and T-cell epitopes. Methods: The prediction of the most antigenic epitopes has targeted the capsid and envelope proteins as well as non-structural proteins NS5 and NS3 using immune-informatics tools PROTPARAM, CFSSP, PSIPRED, and Vaxijen v2.0. B and T-cell epitopes were predicted using ABCpred, IEDB, TepiTool, and their toxicity was evaluated using ToxinPred. The 3-dimensional epitope structures were generated by PEP-FOLD. Energy minimization was performed using Swiss- Pdb Viewer, and molecular docking was conducted using PatchDock and FireDock server. Results: As a result, we predicted 307 epitopes of MHCI (major histocompatibility complex class I) and 102 epitopes of MHCII (major histocompatibility complex class II). Based on immunogenicity and antigenicity scores, we identified the four most antigenic MHC I epitopes: MVLAILAFLR (HLA-A*68:01), ETLHGTVTV (HLA-A*68:02), DENHPYRTW (HLA-B*44:02), QEGVFH TMW (HLA-B*44:03) and TASGRVIEEW (HLA-B*58:01), and MHC II epitopes: IIKKFKKDLAAMLRI (HLA-DRB3*02:02), ENSKMMLELDPPFGD (HLA-DRB3*01:01), HAET WFFDENHPYRT (HLA-DRB3*01:01), TDGVYRVMTRRLLGS (HLA-DRB1*11:01), and DGCW YGMEIRPRKEP (HLA-DRB5*01:01). Conclusion: This study provides novel potential B cell and T cell epitopes to fight against Zika virus infections and may prompt further development of vaccines against ZIKV and other emerging infectious diseases. However, further investigations for protective immune response by in vitro and in vivo studies to ratify immunogenicity, the safety of the predicted structure, and ultimately for the vaccine properties to prevent ZIKV infections are warranted.

Publisher

Bentham Science Publishers Ltd.

Subject

Microbiology (medical),Pharmacology,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3