Network Pharmacology: Exploring the Resources and Methodologies

Author:

Muhammad Junaid1,Khan Abbas1,Ali Arif1,Fang Li1,Yanjing Wang1,Xu Qin1,Wei Dong-Qing1

Affiliation:

1. Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

Abstract

Multi-target and combinatorial therapies have been focused for the past several decades. These approaches achieved considerable therapeutic efficacy by modulating the activities of the targets in complex diseases such as HIV-1 infection, cancer and diabetes disease. Most of the diseases cannot be treated efficiently in terms of single gene target, because it involves the cessation of the coordinated function of distinct gene groups. Most of the cellular components work efficiently by interacting with other cellular components and all these interactions together represent interactome. This interconnectivity shows that a defect in a single gene may not be restricted to the gene product itself, but may spread along the network. So, drug development must be based on the network-based perspective of disease mechanisms. Many systematic diseases like neurodegenerative disorders, cancer and cardiovascular cannot be treated efficiently by the single gene target strategy because these diseases involve the complex biological machinery. In clinical trials, many mono-therapies have been found to be less effective. In mono-therapies, the long term treatment, for the systematic diseases make the diseases able to acquired resistance because of the disease nature of the natural evolution of feedback loop and pathway redundancy. Multi-target drugs might be more efficient. Multi-target therapeutics might be less vulnerable because of the inability of the biological system to resist multiple actions. In this study, we will overview the recent advances in the development of methodologies for the identification of drug target interaction and its application in the poly-pharmacology profile of the drug.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3