Exploration of Novel 5α-Reductase Inhibitors for Benign Prostatic Hyperplasia by 2D/3D QSAR, Cytotoxicity Pre-ADME and Docking Studies

Author:

Dhingra Richa1,Malhotra Manav2,Sharma Vivek3,Bhardwaj T.R.4,Dhingra Neelima1

Affiliation:

1. University Institute of Pharmaceutical Sciences; Department of Pharmaceutical Chemistry Panjab University, Chandigarh -160014, India

2. M.K Drugs, F-10 Focal point, Industrial Area, Derrabassi-140587, India

3. Animal Cell Culture Lab, Indo-Soviet Friendship (ISF) College of Pharmacy, Ferozepur Road, Moga-142001, India

4. School of Pharmacy and Emerging Sciences, Baddi University, Baddi, H.P.-173205, India

Abstract

Background: 5α-Reductase (5AR), an NADPH dependent enzyme, is expressed in most of the prostate epithelial cells. By converting testosterone (T) into more potent androgen dihydrotestosterone (DHT), it plays an important role in men physiology and represents an efficient therapeutic target for androgen-dependent diseases. Over the last few years, significant efforts have been made in order to develop 5AR inhibitors (5ARI) to treat Benign Prostatic Hyperplasia because of excessive production of DHT. Methods: In the present study, 2D and 3D QSAR pharmacophore models have been generated for 5ARI based on known IC50 values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (SsOHE-index); semi empirical (Quadrupole2) and physicochemical descriptors (Mol. Wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r2 = 0.98, q2 =0.84; F = 57.87, pred r2 = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well-validated 2D PLS, and 3D kNN models were used to search novel 5AR inhibitors with different chemical scaffold. The compounds were further sorted by applying ADMET properties and in vitro cytotoxicity studies against prostate cancer cell lines PC-3. Molecular docking studies have also been employed to investigate the binding interactions and to study the stability of docked conformation in detail. Results: Several important hydrophobic and hydrogen bond interactions with 5AR lead to the identification of active binding sites of 4AT0 protein in the docked complex, which include the gatekeeper residues ALA 63A (Chain A: ALA63), THR 60 A (Chain A: THR60), and ARG 456 A (Chain A: ARG456), at the hinge region. Conclusion: Overall, this study suggests that the proposed compounds have the potential as effective inhibitors for 5AR.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3