Computational Approaches for Investigating Disease-causing Mutations in Membrane Proteins: Database Development, Analysis and Prediction

Author:

Gromiha M. Michael1ORCID,Kulandaisamy Arulsang1ORCID,Ridha Fathima1,Frishman Dmitrij2

Affiliation:

1. Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India

2. Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany

Abstract

Abstract: Membrane proteins (MPs) play an essential role in a broad range of cellular functions, serving as transporters, enzymes, receptors, and communicators, and about ~60% of membrane proteins are primarily used as drug targets. These proteins adopt either -helical or -barrel structures in the lipid bilayer of a cell/organelle membrane. Mutations in membrane proteins alter their structure and function, and may lead to diseases. Data on disease-causing and neutral mutations in membrane proteins are available in MutHTP and TMSNP databases, which provide additional features based on sequence, structure, topology, and diseases. These databases have been effectively utilized for analysing sequence and structure-based features in disease-causing and neutral mutations in membrane proteins, exploring disease-causing mechanisms, elucidating the relationship between sequence/structural parameters and diseases, and developing computational tools. Further, machine learning-based tools have been developed for identifying disease-causing mutations using diverse features, such as evolutionary information, physicochemical properties, atomic contacts, contact potentials, and the contribution of different energetic terms. These membrane protein-specific tools are helpful in characterizing the effect of new variants in the whole human membrane proteome. In this review, we provide a discussion of the available databases for disease-causing mutations in membrane proteins, followed by a statistical analysis of membrane protein mutations using sequence and structural features. In addition, available prediction tools for identifying disease-causing and neutral mutations in membrane proteins will be described with their performances. This comprehensive review provides deep insights into designing mutation-specific strategies for different diseases.

Funder

Department of Science and Technology, Government of India

Russian Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3