Neuroblastoma and Stem Cell Therapy: An Updated Review

Author:

Gupta Manoj Kumar1,Mallepalli Suresh1,Damu Amooru2,Vadde Ramakrishna1

Affiliation:

1. Department of Biotechnology, Bioinformatics Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India

2. Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India

Abstract

Neuroblastoma (NBM) is the second leading pediatric cancer that develops from the precursors of the sympathetic nervous system. To date, surgery, chemotherapy, and radiation serve as the first-line treatment against NBM in high-risk patients. However, few of these approaches have severe side effects. Recently, numerous studies have also reported that high chemotherapy doses, along with stem cell rescue, improvise event-free survival in patients. In this review, the authors attempted to discuss the pathogenesis associated with NBM and how stem cell therapy can be employed for the treatment of NBM. Stem cells are a group of multipotent, undifferentiated cells that are capable of producing all cells in a particular tissue, organ, or organism. They have an endogenous self-renewal property. This property is tightly modulated for the normal homeostasis within the body. However, the failure of this process leads to carcinogenesis, including NBM. As these properties are modulated via various intrinsic as well as extrinsic pathways, the arrest of these pathways via various drugs may help in controlling various carcinomas, including NBM. Recently, stem cells were utilized for the diagnosis and treatment of NBM. Nevertheless, most of the studies conducted to date are mainly designed on bulk-cell analysis, which in turn provides little information about the population of cells. Thus, the authors believe that, by employing single-cell RNA sequencing technologies and computational approaches, we can unmask the tumor heterogeneity in NBM in a more comprehensive way. In the near future, this information will be highly useful for the identification of biomarkers and treatment associated with NBM in humans.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3