A Method for Predicting Allelic Variants of Single Nucleotide Polymorphisms

Author:

Tyagunova Ekaterina Evgenyevna12ORCID,Zakharov Alexander Sergeevich3ORCID,Pavlova Galina Valerievna1ORCID,Ogarkova Daria Alexandrovna4,Zhuchenko Natalia Alexandrovna1ORCID,Gushchin Vladimir Alexeyevich145ORCID

Affiliation:

1. Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University of the Ministry Healthcare of the Russian Federation Named After I. M. Sechenov (Sechenov University), Moscow, Russia

2. Federal State Budgetary Scientific Institution "Scientific Research Institute of Vaccines and Serums Named After I. I. Mechnikov," Moscow, Russia

3. Federal State Budgetary Educational Institution of Higher Education "Ryazan State Medical University named after Academician I.P. Pavlov" of the Ministry of Health of the Russian Federation (Federal State Budgetary Educational Institution of Ryazan State Medical University of the Ministry of Health of the Russian Federation), Ryazan, Russia

4. Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia

5. Federal State Budgetary Educational Institution of Higher Education "Lomonosov Moscow State University," Moscow, Russia

Abstract

Introduction: Single nucleotide polymorphisms (SNPs) are pivotal in clinical genetics, serving to link genotypes with disease susceptibility and response to environmental factors, including pharmacogenetics. They also play a crucial role in population genetics for mapping the human genome and localizing genes. Despite their utility, challenges arise when molecular genetic studies yield insufficient or uninformative data, particularly for socially significant diseases. This study aims to address these gaps by proposing a method to predict allelic variants of SNPs. Methods: Using quantitative PCR and analyzing body composition data from 150 patients with their voluntary informed consent, we employed IBM SPSS Statistics 29.0 for data analysis. Our prototype formula, exemplified by allelic variant ADRB2 (rs1042713) = 0.257 + 0.639 * allelic variant ADRB2 (rs1042714) - 0.314 * allelic variant ADRB3 (rs4994) + 0.191 * allelic variant PPARA (rs4253778) - 0.218 * allelic variant PPARD (rs2016520) + 0.027 * body weight + 0.00001 * body weight², demonstrates the feasibility of predicting SNP allelic variants. Results: This method holds promise for diverse diseases, including those of significant social impact, due to its potential to streamline and economize molecular genetic research. Its ability to stratify disease risk in the absence of complete SNP data makes it particularly compelling for clinical and laboratory geneticists. Conclusion: However, its translation into clinical practice necessitates the establishment of a comprehensive SNP database, especially for frequently analyzed SNPs within the implementing institution

Publisher

Bentham Science Publishers Ltd.

Reference104 articles.

1. Cotton R.G.H.; Al Aqeel A.I.; Al-Mulla F.; Carrera P.; Claustres M.; Ekong R.; Hyland V.J.; Macrae F.A.; Marafie M.J.; Paalman M.H.; Patrinos G.P.; Qi M.; Ramesar R.S.; Scott R.J.; Sijmons R.H.; Sobrido M.J.; Vihinen M.; Capturing all disease-causing mutations for clinical and research use: Toward an effortless system for the Human Variome Project. Genet Med 2009,11(12),843-849

2. Kimura-Kataoka K.; Ueki M.; Takeshita H.; Fujihara J.; Iida R.; Kawai Y.; Yasuda T.; Identification of the functional alleles of the nonsynonymous single-nucleotide polymorphisms potentially implicated in systemic lupus erythematosus in the human deoxyribonuclease I gene. DNA Cell Biol 2014,33(8),492-502

3. Dawson E.; Abecasis G.R.; Bumpstead S.; Chen Y.; Hunt S.; Beare D.M.; Pabial J.; Dibling T.; Tinsley E.; Kirby S.; Carter D.; Papaspyridonos M.; Livingstone S.; Ganske R.; Lõhmussaar E.; Zernant J.; Tõnisson N.; Remm M.; Mägi R.; Puurand T.; Vilo J.; Kurg A.; Rice K.; Deloukas P.; Mott R.; Metspalu A.; Bentley D.R.; Cardon L.R.; Dunham I.; A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002,418(6897),544-548

4. Ren N.; Dai S.; Ma S.; Yang F.; Strategies for activity analysis of single nucleotide polymorphisms associated with human diseases. Clin Genet 2023,103(4),392-400

5. Sitinjak B.D.P.; Murdaya N.; Rachman T.A.; Zakiyah N.; Barliana M.I.; The potential of single nucleotide polymorphisms (SNPs) as biomarkers and their association with the increased risk of coronary heart disease: A systematic review. Vasc Health Risk Manag 2023,19,289-301

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3