Current Pharmaceutical Research on the Significant Pharmacophore Mannich bases in Drug Design

Author:

Yamali Cem1ORCID,Gul Mustafa2ORCID,Gul Halise Inci3ORCID

Affiliation:

1. Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, Turkey

2. Department of Physiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey

3. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey

Abstract

Abstract: A multitude of distinct Mannich bases have been synthesized and evaluated as potential therapeutics for a wide variety of diseases and medical conditions, either in the form of prodrugs or as molecules that trigger a biological response from specific targets. The Mannich reaction has been utilized to enhance the biological activity of numerous compounds, resulting in notable progress in various areas such as anticonvulsant, antimalarial, anticancer, anti-inflammatory, antiproliferative, antibacterial, antimicrobial, antitubercular, antiprotozoal, topoisomerases I and II inhibition, α-glucosidase inhibition, carbonic anhydrase inhibition, as well as research related to anti-Alzheimer's disease and anti-Parkinson's disease. Bioactive semisynthetic Mannich bases derived from natural compounds such as chalcone, curcumin, and thymol have also been identified. : Pharmaceutical compounds characterized by low solubility may encounter challenges related to their oral bioavailability, half-life, distribution within tissues, rapid metabolism, toxicity, and various other relevant variables. Mannich bases have the ability to undergo protonation under physiological circumstances, facilitating interactions between ligands and receptors, and enhancing their solubility in water. The experimental findings indicate that the solubility of Mannich base prodrugs is higher compared to that of the parent compound. The use of the multicomponent Mannich reaction has been established as a valuable synthetic methodology for the construction of multifunctional compounds through the application of diverse synthetic strategies under varying reaction conditions. The continuous investigation of synthetic techniques for Mannich reactions involves several approaches, such as employing protocols in aquatic environments, utilizing catalysts that are both biodegradable and reusable, exploring the use of ionic liquids, investigating solvent-free and/or catalyst-free media, and exploring reaction conditions involving microwave and ultrasound irradiation. : Consequently, the Mannich reaction has emerged as a powerful technique in the field of medicinal chemistry. It is utilized for the creation of new chemical compounds that possess diverse and attractive biologic features. Additionally, this reaction is employed to alter the physicochemical properties of a potential drug candidate, thereby influencing its bioavailability, efficacy, and pharmacological activity. Due to their favorable bioactivities and synthesis techniques, Mannich bases remain a subject of ongoing attention in the field of medicinal/pharmaceutical chemistry.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3