Single-molecule Force Microscopy: A Powerful Tool for Studying the Mechanical Properties of Cell Membranes

Author:

Shi Yan1ORCID,Cai Mingjun1ORCID,Wang Hongda1ORCID

Affiliation:

1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China

Abstract

Background: Cell membrane is a physical barrier for cells, as well as an important structure with complex functions in cellular activities. The cell membrane can not only receive external mechanical signal stimulation and respond (e.g., cell migration, differentiation, tumorigenesis, growth), but it can also spontaneously exert force on the environment to regulate cellular activities (such as tissue repair, tumor metastasis, extracellular matrix regulation, etc.). Methods: This review introduces single-molecule force methods, such as atomic force microscopy, optical tweezers, magnetic tweezers, micropipette adhesion assay, tension gauge tethers, and traction force microscopy. Results: This review summarizes the principles, advantages, and disadvantages of single-molecule force methods developed in recent years, as well as their application in terms of force received and generated by cells. The study of cell mechanics enables us to understand the nature of mechanical signal transduction and the manifestation of the cell's movement. Conclusion: The study of the mechanical properties of the cell microenvironment leads to a gradual understanding of the important role of cell mechanics in development, physiology, and pathology. Recently developed combined methods are beneficial for further studying cell mechanics. The optimization of these methods and the invention of new methods enable the continuing research on cell mechanics.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioanalysis;Current Analytical Chemistry;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3