Optimization and Analysis of Acid Treated Trimethylamine using Surface Response and Gas Chromatography Analytical Methods

Author:

Park Seul-Ki1,Khan Fazlurrahman2,Cho Yeon-Jin1,Hong Dong-Lee1,Jang Yu-Mi1,Kim Young-Mog1

Affiliation:

1. Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea

2. Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea

Abstract

Background: Trimethylamine (TMA) is a nitrogenous base aliphatic organic compound accounting for the odor of rotten fish and it is used as an indicator for analyzing the quality of fish products. Introduction: Extraction procedures and analytical methods including colorimetric and Gas- Chromatography (GC) can quantify the TMA contents of fish products after pre-treatment with basic solutions. However, the extraction procedure and analytical methods for acid-treated samples are not known, despite the majority of fish products being preserved using acid preservatives. Methods: The methodologies used included solid-phase micro-extraction of TMA followed by its quantification by a GC-based analytical method. An analysis of response surface methodology was also conducted to verify the optimum conditions for TMA detection in acid-treated liquid samples affected by factors including trapping time, temperature, and stirring speed. Results: The results obtained from this study showed that the optimum conditions for the best yield of TMA extraction are 20 min of trapping, emission at 55°C, and stirring at 400 rpm. The validation of the developed method was carried out using rotten fish after acid treatment. Acid treatment decreased TMA by up to 73.01%, however, when adding NaOH solution of the same volume to the samples, TMA increased similar to the control group. Conclusion: Here, we report a simple, sensitive, and rapid extraction procedure. A GC-based analytical method was developed for the analysis of TMA from the acid-treated sample. The developed extraction procedure and analytical methods were optimized and validated, which could be helpful for the extraction of TMA without damaging the sample.

Funder

Marine Biotechnology Program, Ministry of Oceans and Fisheries, Republic of Korea

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3