RP-UFLC based Bioanalytical Method Development, Optimization, and Validation for the Estimation of Isradipine in Rabbit Serum

Author:

Swain Suryakanta1,Ghose Debashish2,Patra Chinam Niranjan2,Jena Bikash Ranjan3

Affiliation:

1. School of Pharmacy and Paramedical Sciences, K.K. University, Nalanda, 803115, Bihar, India

2. Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India

3. School of Pharmacy and Life Science, Centurion University of Technology and Management, Bhubaneswar, 751009, Odisha, India

Abstract

Introduction: The objective of this study is to provide a rapid, sensitive, consistent, and costeffective method for quantifying isradipine using ultra-fast liquid chromatography. Methods: Quality by Design principles will form the basis of this approach, grounded on response surface analysis. Shimadzu liquid chromatographic system equipped with a photodiode array detector and LC solution software was used to conduct the RP-UFLC method development and validation. An ODS C18 (250 x 4.6 mm; 5 μm) UFLC column was used to complete the analysis. The RSM methodology utilized a central composite design to perform the optimization studies. Results: The mobile phase ratio and flow rate were considered crucial method parameters, as well as the peak area, retention time, and USP plate were considered critical analytical attributes. The optimal conditions for chromatographic separation were followed using 80% acetonitrile and water (20% v/v) as mobile phase, a 1 mL/min flow rate, an injection volume of 20 μL, 40°C of column oven temperature, and maximum absorption at λmax 254 nm using graphical optimization technique. When examining concentrations between 5 and 150 ng/mL, linearity was observed with an R2 of 0.999. The method created was validated by employing stability testing per the recommendations provided by ICH Q2 (R1). The analysis of blood serum was modified so that it could be used to examine the pharmacokinetic parameters. Conclusion: As a result, high accuracy, precision, sensitivity, linearity, and robustness were established for predicting the amount of isradipine present in its freeze-dried nano-formulations.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3