Green Synthesis of Silver Nanoparticles using Coriandrum sativum and Murraya koenigii Leaf Extract and its Thrombolytic Activity

Author:

Pram Priyanca1,Mishra Nikita1,Vaithilingam Mohanasrinivasan1,Samuel Merlyn Keziah1,Mohanan Maneesha1,Kothari Neeti1,Chandrasekaran Subathra Devi1

Affiliation:

1. Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

Background: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. Objective: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. Methods: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. Results: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. Conclusion: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3