Selective Extraction of Lithium from Spent-NMC Battery Cathodes Using Sodium Hydroxide as a Leaching Agent at Elevated Temperatures

Author:

Zulkipli Rohiman Ahmad1ORCID,Perdana Indra1,Aprilianto Doni Riski1,Rahmawati Tri1,Rochmadi 1

Affiliation:

1. Universitas Gadjah Mada, Chemical Engineering, Yogyakarta, 55281, Indonesia

Abstract

Introduction: The demand for lithium-ion batteries (LIBs) is rapidly increasing due to the growth of the electronics and electric vehicle industries. Even though the batteries are rechargeable, their storage capacity decreases, and they eventually end up being wasted. Recycling the spent LIBs is necessary to reduce the environmental impact and utilize the precious metals contained in the waste Methods: The present work focuses on the selective recovery of lithium from the cathodes of spent NMC batteries through the hydrometallurgical process using a sodium hydroxide solution. The leaching process was carried out in 2 M and 4 M NaOH concentrations for 120 minutes at high pressure and at temperatures of 398.15 K, 423.15 K, 448.15 K, and 473.15 K. Experimental results showed that 56.53% of lithium could be recovered with nearly 100% selectivity under the optimum leaching conditions of 473.15 K and 4 M NaOH. The release of lithium ions was due to a combination of sodium adsorption, ion exchange, and impregnation mechanisms. Result: Calculation results showed that the activation energy of the lithium leaching process was 2.1990×104 J/mol, the reaction was endothermic with enthalpy and entropy at standard conditions (298.15 K) of 4.8936×105 J/mol and 1.4421×103 J/mol/K, respectively. Conclusion: The present work also suggested that total lithium recovery can be increased through a series of leaching processes.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3