Zirconium Dioxide Nanoparticles Effect on the Color Stability of Maxillofacial Silicone after Outdoor Weathering

Author:

Abdalqadir MohammedORCID,Azhdar BruskaORCID

Abstract

Background: Maxillofacial prostheses made of silicone elastomers tend to lose color. Despite advances in materials and processes, color change over time remains a challenge. Objective: This in vitro study aimed to observe how zirconium dioxide (ZrO2) nanoparticles impact the color stability of M511 heat temperature vulcanizing (HTV) silicone elastomer following outdoor weathering. Methods: ZrO2 nanoparticles were added in concentrations of 1%, 2%, and 3% by weight to the M511 HTV silicone elastomer. Brilliant red- and mocha-pigmented silicone pigments were utilized, along with colorless silicone as a base control. A total of 90 disk-shaped specimens were fabricated and divided into nine experimental groups, each containing ten samples (n = 10). All specimens were subjected to 6 months of outdoor weathering. A colorimeter was used to measure the values of L*a*b* according to the CIELab system. The 50:50% perceptibility threshold (∆E* = 1.1) and acceptability threshold (∆E* = 3.0) were used to interpret recorded color differences. At the 0.05 level of significance, the 1-way ANOVA and the Tukey post hoc test were used in the statistical analysis. Results: All evaluated specimen groups experienced a chromatic alteration (∆E* > 0). The ∆E* values exceeded the perceptible threshold in all groups (1.1 units). The ∆E* value of the colorless group and the red pigment with and without ZrO2 nanoparticles were both above the acceptable threshold (p < 0.001). Mocha control was also above the acceptable level but was not statistically significant (p > 0.99). ZrO2 nanoparticles showed a reduction in color change. Conclusion: According to this in vitro study, all specimens underwent color changes. Even colorless silicone exhibited a significant color change. The red pigment showed a highly significant chromatic alteration. ZrO2 nanoparticles showed important protection and a reduction in color change. Its protecting action increased with an increase in the concentration of ZrO2 nanoparticles (3% ZrO2 > 2% ZrO2 > 1% ZrO2).

Publisher

Bentham Science Publishers Ltd.

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3