Long Non-coding RNA DLEU1 Promotes Progression of Osteoarthritis via miR-492/TLR8 Axis

Author:

Ni Chenzhe1,Zhang Wanglin2,Qiu Sai1,Cheng Hao1,Ma Chunhui3

Affiliation:

1. Department of Orthopaedics, Qidong People’s Hospital, Nantong University, Jiangsu, 226200, China

2. Department of Orthopaedics, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China

3. Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China

Abstract

Background: Long non-coding RNAs (LncRNAs) are generally reported to participate in the development of Osteoarthritis (OA) by acting as competing endogenous RNAs (ceRNAs). However, the molecular mechanism is largely unknown. This study aimed to investigate the possible mechanisms contributing to osteoarthritis (OA). Methods: Four gene expression profiles from patients with OA were downloaded from a public database and integrated to screen important RNAs associated with OA. Differentially expressed (DE) lncRNAs, microRNAs (miRNAs), and mRNAs were filtered, and a ceRNA network was constructed. An in vitro OA model was established by treating chondrocytes with IL-1β. The expression levels of MMP-13, COL2A1, aggrecan, and RUNX2 were detected by qRT-PCR and western blot. Cell proliferation ability was detected by CCK-8 assay. Flow cytometry was used for apoptosis assay. A dual luciferase reporter gene was used to confirm the relationship between DLEU1, miR-492, and TLR8 Results: An OA-related ceRNA network, including 11 pathways, 3 miRNAs, 7 lncRNAs, and 16 mRNAs, was constructed. DLEU1 and TLR8 were upregulated, and miR-492 was downregulated in IL-1β-induced chondrocytes. Overexpression of DLEU1 suppressed viability and promoted apoptosis and extracellular matrix (ECM) degradation in IL-1β induced chondrocytes. Luciferase reporter assay validated the regulatory relations among DLEU1, miR-492, and TLR8. Further study revealed that the effects of DLEU1 on chondrocytes could be reversed by miR-492. Conclusion: DLEU1 may be responsible for the viability, apoptosis, and ECM degradation in OA via miR-492/TLR8 axis

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3