Integrative Bioinformatics Analysis for Targeting Hub Genes in Hepatocellular Carcinoma Treatment

Author:

Gudivada Indu Priya1ORCID,Amajala Krishna Chaitanya1ORCID

Affiliation:

1. Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India

Abstract

Background: The damage in the liver and hepatocytes is where the primary liver cancer begins, and this is referred to as Hepatocellular Carcinoma (HCC). One of the best methods for detecting changes in gene expression of hepatocellular carcinoma is through bioinformatics approaches. Objective: This study aimed to identify potential drug target(s) hubs mediating HCC progression using computational approaches through gene expression and protein-protein interaction datasets. Methodology: Four datasets related to HCC were acquired from the GEO database, and Differentially Expressed Genes (DEGs) were identified. Using Evenn, the common genes were chosen. Using the Fun Rich tool, functional associations among the genes were identified. Further, protein-protein interaction networks were predicted using STRING, and hub genes were identified using Cytoscape. The selected hub genes were subjected to GEPIA and Shiny GO analysis for survival analysis and functional enrichment studies for the identified hub genes. The up-regulating genes were further studied for immunohistopathological studies using HPA to identify gene/protein expression in normal vs HCC conditions. Drug Bank and Drug Gene Interaction Database were employed to find the reported drug status and targets. Finally, STITCH was performed to identify the functional association between the drugs and the identified hub genes. Results: The GEO2R analysis for the considered datasets identified 735 upregulating and 284 downregulating DEGs. Functional gene associations were identified through the Fun Rich tool. Further, PPIN network analysis was performed using STRING. A comparative study was carried out between the experimental evidence and the other seven data evidence in STRING, revealing that most proteins in the network were involved in protein-protein interactions. Further, through Cytoscape plugins, the ranking of the genes was analyzed, and densely connected regions were identified, resulting in the selection of the top 20 hub genes involved in HCC pathogenesis. The identified hub genes were: KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Further, GEPIA and Shiny GO analyses provided insights into survival ratios and functional enrichment studied for the hub genes. The HPA database studies further found that upregulating genes were involved in changes in protein expression in Normal vs HCC tissues. These findings indicated that hub genes were certainly involved in the progression of HCC. STITCH database studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, could be used as leads to identify novel drugs, and identified hub genes could also be considered as potential and promising drug targets as they are involved in the gene-chemical interaction networks. Conclusion: The present study involved various integrated bioinformatics approaches, analyzing gene expression and protein-protein interaction datasets, resulting in the identification of 20 topranked hubs involved in the progression of HCC. They are KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Gene-chemical interaction network studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, can be used as leads to identify novel drugs, and the identified hub genes can be promising drug targets. The current study underscores the significance of targeting these hub genes and utilizing existing molecules to generate new molecules to combat liver cancer effectively and can be further explored in terms of drug discovery research to develop treatments for HCC.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3