Deep Learning Based on Enhanced MRI T1 Imaging to Differentiate Small-cell and Non-small-cell Primary Lung Cancers in Patients with Brain Metastases

Author:

Sui Lianyu1,Chang Shilong2,Xue LinYan234,Wang Jianing1,Zhang Yu1,Yang Kun564,Gao Bu-Lang1,Yin Xiaoping1

Affiliation:

1. Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei 071002, China

2. College of Quality and Technical Supervision, Hebei University, Baoding 071002, Hebei, China

3. National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, Hebei, China

4. Hebei Technology Innovation Center for Lightweight of New Energy Vehicle Power System, Baoding 071002, Hebei, China

5. College of Quality and Technical Supervision, Hebei University, Baoding 071002, Hebei, China;

6. National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, Hebei, China;

Abstract

Objectives: To differentiate the primary small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) for patients with brain metastases (BMs) based on a deep learning (DL) model using contrast-enhanced magnetic resonance imaging (MRI) T1 weighted (T1CE) images. Methods: Out of 711 patients with BMs of lung cancer origin (SCLC 232, NSCLC 479), the MRI datasets of 192 patients (lesions’ widths and heights > 30 pixels) with BMs from lung cancer (73 SCLC and 119 NSCLC) confirmed pathologically were enrolled, retrospectively. A typical convolutional neural network ResNet18 was applied for the automatic classification of BMs lesions from lung cancer based on T1CE images, with training and testing groups randomized per patient to eliminate learning bias. A 5-fold cross-validation was performed to evaluate the classification of the model. The receiver operating characteristic (ROC) curve, accuracy, precision, recall and f1 score were calculated. Results: For a 5-fold cross-validation test, the DL model achieved AUCs of 0.8019 and 0.8024 for SCLC and NSCLC patients with BMs, respectively, and a mean overall accuracy of 0.7515±0.04. The DL model performed well in differentiating the primary SCLC and NSCLC with BMs. Conclusion: The proposed DL model is feasible and effective in differentiating the pathological subtypes of SCLC and NSCLC causing BMs, which may be used as a new tool for oncologists to diagnose noninvasively BMs and guide therapy based on the imaging structure of tumors.

Funder

Post-graduate’s Innovation Fund Project of Hebei Province

Medical Science Foundation of Hebei University

Outstanding Young Scientific Research and Innovation Team of Hebei University

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3