A Critical Appraisal of Functional Hydrogels for Chronic Wound Healing: Recent Advances and Ongoing Research

Author:

Markandeywar Tanmay S.12,Singh Dilpreet1,Narang Raj Kumar1

Affiliation:

1. Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Punjab, 142001, India

2. Department of Pharmaceutical Sciences, IK Gujral Punjab Technical University, Jalandhar, Punjab, 146001, India

Abstract

Abstract: In diabetic wounds, reactive oxygen species (ROS) are developed in large quantities in a consistently hyperglycemic and excessive biogenic environment. Inflammatory factors are increased as a result of impaired hematopoiesis. Because, subsequent infections obstruct the healing process and as a result, most chronic wounds are not healed properly. The majority of chronic diabetic wounds are worsened during the inflammatory stage. Because of excessive ROS, it is still challenging for a timely closure of diabetic chronic wounds. Wound dressings with anti-inflammatory and ROS scavenging properties are preferable for the treatment of diabetic wounds. Hence, a strategic treatment is required which facilitates both targeting and myogenic potential. In recent decades, the production of macroporous hydrogels via three-dimensional (3D) printing has gained popularity as a cutting-edge technique for chronic wounds. Multiple hydrogel subtypes have been formulated for different states of healing of chronic wounds. The hydrogel used in 3D printing indicated better wound healing by enhancing the expression of adipose-derived stem cells (ASCs) activities in scaffolds due to the presence of an ordered macroporous structure. Regenerative medicine has undergone a paradigm shift as a result of the introduction of inventive medicines based on the use of living organisms. New treatments for skin wounds have been the subject of several studies, with bioactive peptides, nanoparticles, and hydrogels attracting a lot of attention due to their potential as therapeutics. For chronic wound healing, hydrogels create an angiogenesis microenvironment and avoid wound infections. Hence, the present review provides light on different superficial hydrogels along with their properties for chronic wound healing.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3