Depletion of DAND5 Hinders EMT in Mouse Embryonic Stem Cell Differentiation

Author:

Belo José A.123ORCID,von Gilsa Lopes João123,Inácio José M.123ORCID,Marques Sara123,Añez Sabrina B.123

Affiliation:

1. Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical Schoo

2. Faculdade de Ciências Médicas, NM

3. FCM, Universidade Nova de Lisboa; Lisboa, Portugal.

Abstract

Background: Dand5 encodes a protein that acts as an antagonist to Nodal/TGF-β and Wnt pathways. A mouse knockout (KO) model has shown that this molecule is associated with left-right asymmetry and cardiac development, with its depletion causing heterotaxia and cardiac hyperplasia. Objective: This study aimed to investigate the molecular mechanisms affected by the depletion of Dand5. Methods: DAND5-KO and wild-type embryoid bodies (EBs) were used to assess genetic expression with RNA sequencing. To complement the expression results that pointed towards differences in epithelial to mesenchymal transition (EMT), we evaluated migration and cell attachment. Lastly, in vivo valve development was investigated, as it was an established model of EMT. Results: DAND5-KO EBs progress faster through differentiation. The differences in expression will lead to differences in the expression of genes involved with Notch and Wnt signalling pathways, as well as changes in the expression of genes encoding membrane proteins. Such changes were accompanied by lower migratory rates in DAND5-KO EBs, as well as higher concentrations of focal adhesions. Within valve development, Dand5 is expressed in the myocardium underlying future valve sites, and its depletion compromises correct valve structure. Conclusion: The DAND5 range of action goes beyond early development. Its absence leads to significantly different expression patterns in vitro and defects in EMT and migration. These results have an in vivo translation in mouse heart valve development. Knowledge regarding the influence of DAND5 in EMT and cell transformation allows further understanding of its role in development, or even in some disease contexts, such as congenital heart defects.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3