Synthesis, Characterization, and Antibacterial Properties of ZnO Nanostructures Functionalized Flexible Carbon Fibers

Author:

Aykaç Ahmet12ORCID,Akkaş Emine Özge2ORCID

Affiliation:

1. Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey

2. Nanoscience and Nanotechnology Department, Izmir Katip Çelebi University, Izmir, Turkey

Abstract

Background: Studies on the surface functionalization of flexible carbon fibers without any substrate by using cost-effective, fast, and practical processes that may provide antibacterial properties to carbon fiber have received great importance recently. Objective: The objective of this study is to obtain zinc oxide nanostructures functionalized carbon fibers by a facile, cheap, fast, and repeatable method, and to show their effective antibacterial activity. Methods: Electroplating and electrochemical anodization were used to synthesize zinc oxide nanostructures on carbon fiber surfaces, respectively, and their antibacterial properties were studied by zone inhibition test against Staphylococcus aureus and Pseudomonas aeruginosa. Results: The zinc oxide nanostructures on carbon fiber surfaces were successfully synthesized in minutes, and they exhibited effective antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa. The morphological properties of the nanocomposite were studied using scanning electron microscopy, which showed that ZnO on the CF surface exhibits a flake-like nanostructure. Fourier transform infrared spectrophotometer, x-ray diffraction spectroscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were used to analyze the composite's compositional, structural, crystallographic, and spectral characteristics. The results from all analyses were in a good agreement, indicating that the wurtzite crystalline ZnO nanostructure was successfully produced on the CF surface. Conclusions: As a consequence, a method for the surface functionalization of carbon fiber using zinc oxide nanostructures has been developed that is feasible, low-cost, rapid, and repeatable. The flexible nanocomposite structure has a significant potential to be employed as a scaffold in sensor technology, wearable devices, and particularly in medical textiles due to its antibacterial and woven-able properties.

Funder

Turkish Scientific and Technological Research Council

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3