Effects of Coupled-/soluble-Copper, Generating from Copper-doped Titanium Dioxide Nanotubes on Cell Response

Author:

Yang Ping1,Gao Pengyu1,Luo Xiao1,Yin Benli1,Jiao Zhisha2,Piao JunJi3,Zhao Ansha1

Affiliation:

1. Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China

2. Nanyang Grain and Oil Quality Inspection Center, Nanyang, Henan, P.R. China

3. Department of Materials Science and Engineering, Chonnam National University, Gwangju, South Korea

Abstract

Background: Endothelialization in vitro is a very common method for surface modification of cardiovascular materials. However, mature endothelial cells are not suitable because of the difficulty in obtaining and immunogenicity. Methods: In this work, we determined the appropriate amount of copper by constructing a copperloaded titanium dioxide nanotube array that can catalyze the release of nitric oxide, compared the effects of coupled-/soluble-copper on stem cells, and then induced stem cells to differentiate into endothelial cells. Results: The results showed that it had a strong promotion effect on the differentiation of stem cells into endothelial cells, which might be used for endothelialization in vitro. Conclusions: SEM and EDS results prove that a high content of copper ions are indeed doped onto the surface of nanotubes with small amounts of Cu release. The release of NO confirms that the release of several samples within a period of time is within the physiological concentration.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3