Targeting the Pathological Hallmarks of Alzheimer’s Disease Through Nanovesicleaided Drug Delivery Approach

Author:

Borah Anupom1,Roy Rubina1,Bhattacharya Pallab2

Affiliation:

1. Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar- 788011, Assam, India

2. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad - 382355, Gandhinagar, Gujarat, India

Abstract

Introduction: Nanovesicle technology is making a huge contribution to the progress of treatment studies for various diseases, including Alzheimer’s disease (AD). AD is the leading neurodegenerative disorder characterized by severe cognitive impairment. Despite the prevalence of several forms of anti-AD drugs, the accelerating pace of AD incidence cannot becurbed, and for rescue, nanovesicle technology has grabbed much attention. Methodology: Comprehensive literature search was carried out using relevant keywords and online database platforms. The main concepts that have been covered included a complex pathomechanism underlying increased acetylcholinesterase (AchE) activity, β-amyloid aggregation, and tau-hyperphosphorylation forming neurofibrillary tangles (NFTs) in the brain, which are amongst the major hallmarks of AD pathology. Therapeutic recommendations exist in the form of AchE inhibitors, along with anti-amyloid and anti-tau therapeutics, which are being explored at a high pace. The degree of the therapeutic outcome, however, gets restricted by the pharmacological limitations. Susceptibility to peripheral metabolism and rapid elimination, inefficiency to cross the blood-brain barrier (BBB) and reach the target brain site are the factors that lower the biostability and bioavailability of anti-AD drugs. The nanovesicle technology has emerged as a route to preserve the therapeutic efficiency of the anti-AD drugs and promote AD treatment. The review hereby aims to summarize the developments made by the nanovesicle technology in aiding the delivery of synthetic and plant-based therapeutics targeting the molecular mechanism of AD pathology. Conclusion: Nanovesicles appear to efficiently aid in target-specific delivery of anti-AD therapeutics and nullify the drawbacks posed by free drugs, besides reducing the dosage requirement and the adversities associated. In addition, the nanovesicle technology also appears to uplift the therapeutic potential of several phyto-compounds with immense anti-AD properties. Furthermore, the review also sheds light on future perspectives to mend the gaps that prevail in the nanovesicle-mediated drug delivery in AD treatment strategies.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3