Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway

Author:

Huang Yanfeng1,Zhang Xie23,Zou Yidan4,Yuan Qiuju5,Xian Yan-Fang1,Lin Zhi-Xiu67

Affiliation:

1. School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China

2. Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China

3. Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China

4. Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China

5. Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China

6. Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China

7. School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China

Abstract

Background: Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. Methods: The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. Results: QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. Conclusion: Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.

Funder

Science and Technology Program of Guangzhou, China

Guangdong Basic and Applied Basic Research Fund, China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Psychiatry and Mental health,Neurology (clinical),Neurology,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3