Qiliqiangxin Prescription Promotes Angiogenesis of Hypoxic Primary Rat Cardiac Microvascular Endothelial Cells via Regulating miR-21 Signaling

Author:

Wang Yanyan1,Zhang Jingjing2,Fu Mingqiang1,Wang Jingfeng1,Cui Xiaotong1,Song Yu1,Han Xueting1,Liu Yuan1,Zhou Jingmin1,Ge Junbo1

Affiliation:

1. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China

2. Department of Cardiology, Zoucheng Hospital, Affiliated Hospital of Jining Medical University, 273500, Jining, Shandong, China

Abstract

Background and Objective: Angiogenesis is the most important repair process of tissues subjected to ischemic injury. The present study aims to investigate whether the pro-angiogenic effect of Qiliqiangxin prescription (QL) is mediated through miR-21 signaling. Methods: Cardiac microvascular endothelial cells (CMECs) were isolated and cultured from 2-3 weeks old SD rats by the method of planting myocardium tissues. The purity was identified by CD31 immunofluorescence staining. CMECs were then cultured under 1% O2 hypoxia or normoxia condition for 24h in the presence or absence of QL pretreatment (QL, 0.5mg/ml, 24h). The mimics and inhibitors of miR-21 were transfected into CMECs. miR-21, HIF-1α, and VEGF expressions of CMECs were then detected by qRT-PCR and/or Western blot. The proliferation, migration, and tube formation functions of CMECs were assessed using the BrdU assay, wound healing test, and tube formation assay, respectively. Results: The results showed that compared with the control group, hypoxia significantly upregulated the expression of miR-21 and impaired CMECs proliferation, migration, and tube formation functions. Compared with the hypoxia group, QL further upregulated miR-21, HIF-1α, and VEGF expressions, and improved cell proliferation, migration, and tube formation of hypoxic CMECs. These effects of QL were abolished by a knockdown of miR-21. Conversely, treatment with miR-21 mimics further enhanced QL induced changes in hypoxic CMECs. Conclusions: Results indicate that the pro-angiogenesis effects of QL on hypoxic CMECs are mediated by activating miR-21 and its downstream HIF-1α/VEGF pathway possibly.

Funder

Shanghai Municipal Commission of Health and Family Planning

National Basic Research Program of China

Outstanding Academic Leaders supported by Shanghai Science and Technology Commission

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3