Protective Effect of Panax Notoginseng Saponins on Apolipoprotein-E-deficient Atherosclerosis-prone Mice

Author:

Yang He1,Liu Zuodong1,Hu Xiangka2,Liu Xiaojuan1,Gui Liuming1,Cai Zengxiaorui1,Dai Chunmei2

Affiliation:

1. ollege of Basic Medicine, Jinzhou Medical University, JinZhou, Liaoning Province, 121000, China

2. Institute of Materia Medica, Jinzhou Medical University, JinZhou, Liaoning Province, 121000, China

Abstract

Background: It is widely recognized that atherosclerosis (AS) is related to vascular inflammation. Panax notoginseng saponins (PNS) extracted from the roots of Panax notoginseng have been shown to possess anti-inflammatory activity. It is widely used in the clinical treatment of cardiovascular and cerebrovascular diseases, but the protective effect of PNS on atherosclerosis is not fully understood. This study was designed to test the effects of PNS administration in apolipoprotein (apo)-E-deficient (ApoE-/-) mice on the activation of NF-κB p65, IL-1β, IL-6, TNF-α and Calpain1 proteins. Methods: 24 ApoE-/- mice fed with high-fat diet for 8 weeks to create the AS model. PNS, dissolved in three distilled water, was administered orally to two treatment groups at dosages of 60 mg/kg/d/mice and 180 mg/kg/d/mice. After 8 weeks, peripheral blood was collected for assessing the levels of TG, TC, LDL-C and HDL-C in serum by Biochemical Analyzer. HE staining was used to observe pathomorphological changes in the aortic root. Oil Red O staining was used to observe the lipid deposition in the aortic root. ELISA kits were used to assess the levels of IL-1β and TNF-α in serum. The expression levels of NF-κB p65, IL-1β, IL-6, TNF-α, and Calpain1 proteins in the aortic root were identified by Western blot. Results: After PNS administration for 8 weeks, the levels of TG, TC, LDL-C, IL-1β and TNF-α were decreased, the level of HDL-C was increased in apoE-/- mice. The arrangement of the tissue of aortic root tended to be normal, the cell morphology was restored, and the lipid depositions were reduced in apoE-/- mice treated with PNS. Moreover, PNS inhibited the expression levels of NF-κB p65, IL-6, IL-1β, TNF-α and Calpain1 proteins of aortic root tissues in apoE-/- mice. Conclusion: PNS may inhibit the progression of atherosclerotic lesions via their anti-inflammatory biological property. PNS suppress the NF-κB signaling pathway and inhibits the expression of pro-inflammatory factors such as NF-κB p65, IL-6, IL-1β, TNF-α and Calpain1 proteins in aortic root tissues of apoE-/- mice.

Funder

Innovative Talents Support Project of Higher Education Institutions in Liaoning Province

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3