Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing

Author:

Alka 1,Verma Abhishek1,Mishra Nidhi1,Singh Neelu1,Singh Priya1,Nisha Raquibun1,Pal Ravi Raj1,Saraf Shubhini A.12ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India

2. National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India

Abstract

Abstract: Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3