Pharmaceutical and Pharmacokinetic Aspects of Nanoformulation Based Drug Delivery Systems for Anti-cancer Drugs

Author:

Singh Arun Kumar1,Bahadur Shiv2ORCID,Yadav Deepika1,Dabas Hunny3

Affiliation:

1. Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India

2. Institute of Pharmaceutical Research, GLA University, Mathura-281406, India

3. Department of Pharmaceutics, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana-122505, India

Abstract

Abstract: Many nanodrug delivery systems used with various routes of administration have been developed recently. These may be dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, or polymeric nanoparticles. The nanodrug delivery systems may improve effectiveness, safety, physicochemical qualities, and pharmacokinetic/pharmacodynamic profile. Functionalized nanodrug delivery systems can increase the half-life, improve the bioavailability of orally administered pharmaceuticals, and target tissue distribution. By decreasing the number of dosage intervals required, increasing the magnitude of the intended pharmacological effects, and decreasing the severity of undesirable systemic side effects, nanodrug systems show promise for improving treatment adherence and clinical results. Nanodrugs have been demonstrated to exhibit cytotoxicity, oxidative stress, inflammation, and genotoxicity in vitro and in vivo; however, this attention has recently been refocused on their potentially harmful potential owing to their beneficial pharmacokinetic features for the treatment of cancer. Researchers require a more profound knowledge of the pharmacokinetic and safety aspects of nanodrugs and the limits of each administration route to continue creating safe and efficacious nanodrugs with high therapeutic potential. The benefits and risks associated with pharmacokinetics have been highlighted in this article, which describes the current state of nanodrug system development.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3