Risk Genes in Schizophrenia and Their Importance in Choosing the Appropriate Antipsychotic Treatment

Author:

Werner Felix-Martin1,Coveñas Rafael1

Affiliation:

1. Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, (Group GIR-BMD), University of Salamanca, 37007-Salamanca, Spain

Abstract

Background: Schizophrenia is a chronic mental illness that in 80% of cases has a genetic etiology. In the last years, 260 risk genes with a predisposition to schizophrenia have been discovered and correlations between risk genes and the therapeutic efficacy of an antipsychotic treatment/pharmacotherapy resistance have been reported. Objective: The objective of this review is to update the main risk genes involved in schizophrenia and to establish an association between the single nucleotide polymorphisms (SNPs) of these genes and pharmacotherapy resistance/efficacy of a determined antipsychotic treatment. Besides, neural networks in the brain centers involved in schizophrenia will be updated to point out the altered functions of classical neurotransmitters and neuropeptides due to risk genes. Methods: In schizophrenia, important risk genes, such as catechol-O-methyl transferase (COMT), monoamine oxidase (MAO A/B), glutamic acid decarboxylase 67 (GAD 67), dysbindin-1 and neuregulin-1 will be mentioned. To describe the function of these risk genes, neural networks in the ventral tegmental area, hippocampus and prefrontal cortex will also be developed. Results : An association between the SNPs of some risk genes and the efficacy of an antipsychotic treatment is reported: SNPs such as rs165599 (COMT gene), rs1801028 (D2 receptor gene) and rsSer9Gly (D3 receptor gene) are associated with a better antipsychotic treatment efficacy (e.g., treatment of negative schizophrenic symptoms with risperidone). The rs4680 SNP (COMT and D2 receptor genes) is associated with antipsychoticinduced dopamine hypersensitivity and pharmacotherapy resistance. The function of risk genes is described: COMT and MAO A/B genes, with reduced activity in the corresponding enzymes, are associated with a decrease in dopamine degradation and hence dopamine hyperactivity occurred via D2 receptors. The GAD 67 risk gene is linked with GABAergic dysfunction and consequently GABAergic neurons weakly presynaptically inhibit D2 dopaminergic neurons. The D-amino acid oxidase activator (DAOA) risk gene is connected with glutamatergic dysfunction via NMDA receptors. Glutamatergic neurons might exert a weak presynaptic inhibition upon 5- HT2A serotonergic neurons located in the ventral tegmental area and hippocampus. Neural networks in the latter two regions and in the prefrontal cortex are updated. Conclusion: It is important to examine the SNPs of the risk genes involved in schizophrenia to establish a correlation between these SNPs and the efficacy of a determined antipsychotic drug. In the future, after examining these SNPs, it might be possible to choose the most appropriate antipsychotic drug. Thus, schizophrenic patients with a good response to a determined antipsychotic treatment and patients with resistance to this treatment could be well differentiated.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3